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PREFACE 

This Memorandum is part of RAND's continuing effort to develop 

cost estimating relationships for new equipments. The objective is 

to provide the cost analyst with a technically sound framework for 

evaluating and predicting the cost of phased array radars. The 

Memorandum represents an expansion of RM-3729-ARPA, Array Radars; 

Performance and Cost Trade-offs (U), by J. D. Mallett, July 1963, 

Secret, with the major emphasis now on the sensitivity of radar cost 

to changes in radar performance. 

The study should be of use to the Air Force Systems Command and 

other Headquarters USAF organizations concerned with the development 

a.id procurement of systems deploying phased array radars. 

Dr. Rondinelli is a consultant to The RAND Corporation. 
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SÜMMARY 

An analysis Is presented that relates cost of phased array radars 

to specific radar performance requirements.  Phased array performance 

parameters are derived sep-<ritely for surveillance and tracking appli- 

cations in terms of system operational requirements.  A suitable 

equation for phased array hardware cost estimation is introduced.  By 

the use of Lagrange multiuliers, optimum design formulas and minimum 

cost equations are derived separately for surveillance and tracking 

applications, as well as for a combined simultaneous search and track 

capability. 

Several phased array cost examples are presented using a 

representative range of cost coefficients resulting from a study of 

existing radar technology and the limited cost data available. 

Lastly, the utility of array thinning as a cost saving technique 

is analyzed by comparing the cost of an optimum thinned tracking array 

design to the corresponding cost of an optimum unthinned design for 

equal performance.  In the case of thinned arrays, the radar cost 

equation was modified to include a cost term proportional to the area 

of the thinned receive array.  It is shown that when the area sensitive 

cost term is included, an optimum thinning ratio will exist for 

certain classes of cost coefficients. 
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I.  INTRODUCTION 

The ability to predict with reasonable accuracy the cost cf future 

weapon systems as a function of their performance requirements has been, 

and will remain, a key factor in military planning decisions.  In the 

case of ballistic missile defense, the rapidly changing technology 

available to both the offense and defense compounds the difficulty of 

obtaining useful cost estimating relationships.  In particular, the 

transition in defense systems from conventional high power radars to 

the more sophisticated phased array radar systems necessitates the 

development of new radar cost estimating methods. This is particu- 

larly important since the cost of the phased array radars proposed 

in current ballistic missile defense studies is a significant fraction 

of total system cost. 

The technology of electronically scanned phased array radars has 

advanced steadily in the past decade to the point where there is no 

longer a question of the practicability of fabricating reliable phased 

array systems. However, as one might expect, the ability to predict 

accurately the cost of phased array radar systems is limited by the 

lack of a sufficient number of phased array system development pro- 

grams from which to draw experience.  If sufficient cost data did 

exist to permit accurate costs to be assigned to identifiable phased 

array radar subassemblies (such is not the case at present), the cost 

analyst could readily estimate the cost of proposed phased array 

radar designs. However, it is still desirable for both the cost 

analyst and systems analyst to have a systematic method by which the 

cost of phased array radars could be related to radar performance. 
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It is only by such relationships (i.e., cost estimating relationships) 

that the cost analyst can extrapolate from the cost of presently pro- 

posed phased array radars to the estimated cost of similar radars 

proposed for future defense systems. 

The purpose of this Memorandum is to develop useful relationships 

between cost and performance requirements for phased array radars for 

both the surveillance and tracking functions. 

Accordingly, in Section III appropriate phased array performance 

parameters are derived separately for both surveillance and tracking 

applications in terms of system operational requirements. 

In Section IV a suitable equation for phased array cost estima- 

tion is introduced. A procedure is presented that employs Lagrange 

multipliers to de ive optimum (i.e., minimum) cost equations separately 

for surveillance and tracking applications, as well as for a combined 

simultaneous search and track capability, subject to the constraints 

imposed by the respective performance parameters r , I\, and T + I\ . 

In Section V several phased array cost examples are presented based 

on cost coefficients resulting from a study of existing radar technology 

in correlation with the limited cost data available. These results are 

analyzed to test the sensitivity of the cost of the phased array radar 

to variations in (1) the required system performance parameters and (2) 

the cost coefficients appearing in the radar cost equations. 

In Section VI the utility of array thinning as a cost saving tech- 

nique is analyzed by comparing the cost of an optimum thinned array 

design to the corresponding cost of an optimum unthinned design for 

equal performance. 
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II. FUNDAMENTALS OF PHASED ARRAYS 

The concept of producing an electronically steered rad^r beam 

by means of an array of individually phase-controlled radiating ele- 

ments is well known. However, it might be appropriate to review some 

fundamentals for the reader who is unfamiliar with radar technology. 

It is not the purpose of this section to attempt a complete summary 

* 
of the various types of phased array configurations.  Instead, only 

those generic differences will be discussed that are felt to have the 

greatest influence on overall radar cost.  In discussing beam forming 

techniques, it will often be convenient to refer to the array in terms 

of its acting as a transmitting antenna, with the understanding that 

similar statements will apply to a receiving array. 

Perhaps the best way to bridge the gap in an introductory dis- 

cussion of phased array radars is to begin by considering briefly 

their forerunner, the conventional mechan'cally scanned antenna.  In 

radars employing mechanical scanning, the radar beam is steered by a 

physical rotation of the antenna structure.  In applications requiring 

large antenna apertures and rapidly steerable beams, mechanical prob- 

lems associated with the antenna drive mechanism become at best for- 

midable and often insurmountable. Since many conventional antennas 

consist of a small primary aperture, which in turn illuminates a 

larger secondary reflecting aperture, it is possible to steer the 

beam by rotating only the smaller primary feed. Even this innovation 

* 
For an example of such a sutnmary, see J. L. Allen, "Array Radars, 

A Survey of Their Potential and Their Limitations," The Microwave 
Journal. May 1962. 



is inadequate, however, for applications requiring the steering of 

radar beams in tiroes of the order of a millisecond or less. 

The phased array radar circumvents the inertia limitation of 

mechanical scanning through the added degree of freedom in control 

of antenna aperture excitation provided by the use of multiple inde- 

pendently driven radiating elements. Scanning of the antenna beam 

is achieved by adjusting the relative phase of the signals exciting 

each successive element of the array in a predetermined manner. The 

time required to change the beam position is now determined by the 

speed with which the phases of the individual element excitations 

can be altered. This time is characteristically of the order of 

microseconds.  In addition to increased scanning speed, phased ar- 

rays also have the advantage of being able to transmit successive 

beams in widely spaced directions, thereby permitting greater system 

design flexibility. 

The simplest phased array configuration consists of a linear 

array of elements.  Because of the linear array geometry it is possi- 

ble to control only one of the two angles defining the beam position 

with such an array. The radiation pattern in the plane orthogonal 

to the linear array dimension is determined by the type of individual 

radiator employed. The pattern in this orthogonal plane is generally 

broad, and, more important, it cannot be electronically scanned, 

To form a narrow pencil beam that can be scanned in two dimen- 

sions, the array geometry must be either planar or three-dimensional. 

An example of the relation between the radiated power pattern P(8, <t>) 

and the element excitations I  for a planar array (shown in Fig. 1) 
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OA = md sin 9 sin 5 
y 

OB = nd sin 9 cos i 
x 

Fig. 1--Planar array geometry 
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is given in Eq. (1): 

(1)   P(6,0) 

N M 
|E Z\  I I i(na-tmß) ik[n(d sin 6 cos 0)4m(d sin 9 sin 0)]|' 
n m 

Beam scanning in a planar array is accomplished by varying the 

slope of a linear phase function along either or both of the orthogonal 

coordinate axes of the array. To point the beam in the coordinate di- 

rection (6_, 0.), the differential phase shifts a  and B must be chosen 

so that 

a ■ -kd    sin 0Q cos 0Q, 

ß - -kd    sin 6n sin <t>n. y 0 0 

For purposes of a cost-oriented discussion, it is appropriate to 

distinguish the various array types on the basis of the amount of com- 

plex (and generally costly) electronic equipment associated with each 

element of the array. This is based on the intuitive assumption that 

for large arrays of many elements, it is the cost associated with each 

element that will have the greatest effect on overall radar cost.  In 

order to appreciate the influence on phased array cost implied by var- 

ious design alternatives, it might be advisable to list the various 

"components" that in the most general case, would be duplicated for 

each element of the array. 

* 
In general, a transmitter module could include all of the 

* 
The antenna element and its associated components are usually 

referred to as a module. 
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following items: 

(a) Antenna element. 

(b) Phase shifter and associated control circuitry. 

(c) Output amplifier. 

(d) Cabling. 

(e) Monitoring circuitry. 

Likewise, a typical receiver module could include the following 

items: 

(a) Antenna. 

(b) Phase shifter and associated control circuitry. 

(c) Radio-frequency (r-f) amplifier. 

(d) Mixer. 

(e) Intermediate-frequency (i-f) amplifier. 

(f) Cabling. 

(g) Monitoring circuitry. 

In the case of a transmitter module, it is usually the phase shifter 

and tht output amplifier that dominate total module cost.  For a 

receiver module, the phase shifter, the r-f amplifier, and the mixer 

usually make ehe major contribution to module cost.  Several techniques 

can be used to reduce the number of individual amplifiers and/or phase 

shifters (with respect to the number of array elements) while still 

retaining much of the flexibility of the more general array configura- 

tion. To reduce the number of individual amplifiers required, a cor- 

porate feed structure is most often used. Techniques for reducing the 

required number of phase shifters differ according to required signal 

bandwidth. Examples are 
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• Frequency scanning (narrow band scanning). 

• Use of quasioptical beam forming or pure time delay insertion 

(wide band scanning). 

These techniques will be discussed in greater detail below.  For pur- 

poses of discussion it is convenient to describe these techniques in 

terms of their use in a linear array, although the same techniques 

are generally applicable to planar and three-dimensional arrays. 

The module cost associated with the use of output power amplifiers 

can be significantly reduced by using a corporate feed structure (a 

series of power-dividing junctions with connecting transmission lines) 

through which all of the elements are excited from a single transmitter 

and driver stage. A major cost saving will result because, while 

vacuum tubes are used, it is usually less costly to generate average 

power in one high power transmitter than in many lower power units 

(for the same total average radiated power). This trend may be re- 

versed when solid state transmitters become available. 

In conjunction with the use of the corporate feed, each element 

of the array has a separate phase shifter.  In this approach each 

phase shifter is required to handle (l/N)-th of the total peak and 

average power.  In high power applications this will result in more 

costly phase shifters. As an alternative, it is possible to perform 

the required phase shifting at low power, either at i-f (followed by 

a mixer) or r-f, but then it is necessary to have an output power 

amplifier for each element. 

For narrow band signal requirements, the simplest means of elim- 

inating the need for individual element phase shifters and individual 
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amplifiers is to employ frequency scanning.  In this technique the 

elements are excited by means of a series of taps along a transmission 

line that is driven from one end. The elements of the array fire gen- 

erally spaced on the order of a half wavelength apart to prevent the 

formation of extraneous radiated beams. However, the length of trans- 

mission line between elements is made many wavelengths long, so that 

a small change in frequency results in a relatively large change in 

the incremental phase shift between successive elements and a cor- 

responding scanning of the radiated beam. The fact that the beam 

pointing direction is frequency sensitive indicates that this tech- 

nique is inherently narrow band in nature and therefore is restricted 

to applications in which wide band signals are not required.  A fur- 

ther disadvantage of frequency scanning is that it precludes the use 

of bandwidth for other operational purposes such as pulse compression 

(i.e., improved range resolution) and frequency agility (i.e., jamming 

countermeasures). 

A wide bandwidth technique that eliminates the need for individual 

element phase shifters is to use quasioptical techniques (i.e., micro- 

wave lenses) to develop desired phase fronts to excite pickup antennas, 

which in turn feed the radiating antenna array.  The spherical Luneberg 

lens is an example of such a phase-computing lens for use with spheri- 

cal arrays.  Each of a series of appropriately positioned exciting 

horns (one for each beam position) on the input hemisphere vi i1 pro- 

duce the required phase front at the pickup horns on the output hemi- 

sphere.  The signal from each pickup horn drives a power amplifier, 

which in turn drives an element on the radiating spherical surface. 
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Precisely manufactured equal line length cables are used between the 

output elements of the computing lens and the transmitting elements. 

Slnoe this technique makes use of pure time delay to develop the de- 

sired phase front, beam positioning is frequency independent; hence 

wide band signals can be accommodated. 

It should be noted that there is generally a significant cost 

difference between narrow band and wide band scanning techniques. 

Wide bandwidth operation requires "time delay scanning" which may 

be achieved by quasioptical beam forming or by the insertion of 

real delay in each element. Both of these techniques tend to be 

considerably more costly than narrow band phase or frequency scan- 

ning techniques. 

Even from this cursory discussion it is clear that there are a 

variety of "internal" design choices (each resulting in differences 

in system cost) from which to choose to satisfy any specified set 

of "external" performance requirements. 

In the next two sections both the performance and cost formulas 

for phased array radars will be introduced in terms of externally 

measurable array paiameters without regard to internal design fea- 

tures. The Influence of internal design alternatives on the various 

cost coefficients in the general cost formula will be considered in 

Section V. 
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III.  PERFORMANCE 

SURVEILLANCE 

The performance of surveillance radars may be measured by the 

single scan detection probability (i.e., the probability of detecting 

the return from a target in the presence of thermal noise during a 

single scan of the surveillance volume), although this is by no means 

the only measure of a surveillance radar's performance. Surveillance 

performance may also be specified, for example, in terms of the cumu- 

lative probability of detection attained on a target as a function 

of its range, but this measure is less general since it presupposes 

that the target Is radially approaching the radar. For the purposes 

of this study, single scan detection probability appears to be a 

more satisfactory performance indicator. The single scan detection 

probability is related to the signal-to-noise ratio (i.e., the ratio 

of the energy received from the target to the average noise power 

density per cycle). This ratio, denoted as E/N-, is given by 

0\ I -  **.A oT. ™* JJ       ted   , 
0  (4n)VkT CCL eff 

where P = average transmitter power (in watts), 

G = gain of transmitting antenna, 

A » effective area of receiving antenna (in square feet), 

a ■ target cross section (in square meters), 

T cc  ■ effective noise temperature of receiver referred to the 
antenna (in K), 

T   ■ dwell time, i.e., time that the radar illuminates the 
target during each scan (in seconds), 
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L = system losses, 

k = Boltzmann's constant, 

R = target range (in nautical miles). 

An alternate expression for E/NQ, which is perhaps more appro- 

priate when the surveillance requirement is stipulated in terms of 

the need to search a solid angle 0 once every T seconds, is 

P      PA o     T. 

"0     4nR4(kTeffL) " 

This follows directly from Eq. (2) through substitution from the fol- 

lowing relations: 

.   4nA „ 
(4a) c - ÄL .   •* . 

t      •   X2 

(4b) T ■ T - 

where Eq. (4a) may be taken to be the definition of uu as the effective 

solid angle of the radiation pattern of the transmitting antenna. 

Equation (4a) also contains the defining relation between gain and 

effective antenna aperture. 

From Eq. (3) we see the well-known result that during search 

the signal-to-noise ratio (and hence the detection probability) de- 

pends on the radar's power-aperture product (FA ) and not on the 

gain of the transmitting antenna. 

This tacitly assumes that one or more receive beams is formed 
whose envelope matches the transmitter »earn, and that both the trans- 
mit and receive beams are less than or equal to Q. 
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In the case of phased array radars, the average power P. the 

effective receiving aperature A , and the transmitter gain G may 

be replaced by the following expressions: 

(5) PtNt • 

(6) A a N V » 
e   r 4 

(7) Gt - Mtn , 

where p = Average transmitted power per element. 
t 

N = number of transmitter elements. 
t * 

N = number of receiver elements. 

Substituting Eqs. (5) and (6) into Eq. (3) and rearranging terms 

yields 

16nR kT ,,L  /ov   /_ v   . 
PA . 

e 

The reason for the introduction of the search parameter T ■ 

p N N will become clear when the question of phased array cost is 

considered. 

TRACKING 

The tracking performance requirement may be formulated in terms 

of a specified accuracy in the measurement of the position of a tar- 

get at a given range.  The variance in total position measurement, 

at range R, is 

(9) U 2  ,  2\,  2 K + °e ) + °r 
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Hanasse has shown that the maximum accuracies (i.e., minimum 

standard deviations) of the argle and range measurements in the pres- 

ence of thermal noise are given by 

^8o ^eo „A%  je _"y V3AR W' v;$f' «        TT./S- y        T7fe~ '        TT-N 

where 

(ii) eo  -f»    eo  "f •     &R-!¥i- 
xx y      y 

Here L and L are the respective linear dimensions of the receive 
x     y r 

antenna along the orthogonal principal planes in which the beam widths 

9  and 0_ are measured; T ,, is the effective pulsewidth (i.e., 
x      y 

approximately equal to the reciprocal of the instantaneous bandwidth); 

X is the radar wavelength; and c is the velocity of light. Substi- 

tuting Eq. (10) into Eq. (9), we have 

«a, o\ ■ Jfo ♦ ,\y ♦ ft)2] 

R2 

N0 

2 
For most tracking cases the [(AR)/R]  term is small in comparison 

to the contribution due to angle errors, and may therefore be neglected. 

That is, it is generally true that 

 X  
R. Manas«e, Summary of Maximum Theoretical Accuracy of Radar 

Measurements. Technical Series Report No. 2, Mitre Corporation, Bedford, 
Mass., April 1960. 
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(f)2 < < ($ ♦ $ ■ 

Assuming Chat this inequality is satisfied, it follows from Eq. 

(12) that tracking performance can be specified either in terms of 

a   or On    and OQ    at a designated range R. For this discussion, a» 
p    x     y x 

and OQ    will be used since radar tracking performance is usually 

y 
specified in terms of angle accuracies rather than position accuracies. 

For the present we may limit consideration to rectangular phased 

arrays of uniformly spaced rows and colums. Let the normalized row 

and column spacings be 

d d 
(14) D - -r*- ,  D - -r* 

x  X '   y  X • 

If N and N are, respectively, the number of rows and columns in the 
x    y 

receive array, then 

(15) L ■= N XD   and  L - N XD . 
xxx      y  y y 

and 

(16) N - N N 
r   x y 

is the number of elements in the receive array. 

From Eqs. (10) the signal-to-noise ratio may be solved for in 

terms of an    and an    yielding 
x      y 

N0  2TT
2
 °e  °9 

x y 

From Eqs. (11), (14), and (15), 
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Hence 

(18) 

16- 

fl     _i L_ 
0    " L    "ND 
y     y      > y 

a    „i i_ 
0        L        N D    ' 

X X XX 

E 3 1 
Nn      ^2 °a Oa    N D D 0      2TT      8    6      r x y 

x    y 

Equating this expression for required signal-to-noise ratio to obtain 

given angle accuracies with Eq. (2) for the signal-to-noise ratio 

achievable on a single target at range R during a dwell time T yields 

(using Eqs. (5), (6), and (7)): 

MO, r   -M2M2   96   R4  kTeffL 

d  x y 

where r is the tracking parameter that relates the radar's perfor- 

mance to the measurable array parameters (i.e., p , N  and N ).  In 

particular, for half-wavelength element spacings, D = D - %  so that x        y 

, ,      384R4kT ,,L 
(20) rt " PtVr 2 

n<y\ aft ae Td 
x y 

The specific requirements for On    and an    depend on the intended ap- 
x      y 

plication of the tracking radar, and this need not be of concern for 

the present discussion. 

At this point, a word of explanation might be in order to clarify 

the significance of the search and track parameters given in Eqs. (8) 
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and (20), respectively. The relevance of these equations is that 

they link the external radar performance parameters (i.e., R, a, 

\, On   ,  etc.) to the measurable array parameters p , N  and N , 
x 

which in turn can be related to radar cost. The radar cost formula- 

tion will be presented in the following section, where radar cost 

will be derived as a function of p , N , N , and either T or [\ or rt' t' r' s    t 

both depending on the operational function of the radar.  Since Eq. 

(8) (for r ) and Eq. (20) (for f ) can then be used in conjunction 
8 t 

with the cost formulas to scale cost versus performance, it is im- 

portant to note that the range dependence in Eqs. (8) and (20) will 

A    3 
be modified from R to R by the fact that the search frame time T 

(Eq. (8)) and the tracking dwell time T (Eq. (20)) will generally be 

linearly proportional to maximum range, assuming a fixed target ve- 

locity.  This point will be explained further in the cost examples 

given in Section V. 
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IV.  RADAR COST 

FORMULATION 

In attempting to formulate an expression for phased array radar 

cost, it is desirable to arrive at a formula that is sufficiently 

general so that it may be used irrespective of the following: 

(a) The phase shifting technique used for beam scanning. 

(b) The transmitter power distribution configuration. 

(c) The physical geometry of the transmitting and receiving 

antenna arrays. 

In this way, various design alternatives such as the following can 

be subsumed under a single cost formula: 

(a) Using frequency scanning versus phase scanning versus pure 

time delay scanning. 

(b) Using a single high power transmitter and a corporate feed 

network versus using as many lower power modules as there 

are elements (or some ratio in between). 

(c) Combining the transmit and receive functions in a single 

arra> using duplexers versus using physically separate 

transmit and receive arrays. 

However, since the radar cost will in general depend on the above 

design choices, it will be necessary (to the extent that our know- 

ledge permits) to reflect this dependence by appropriate changes in 

the coefficients appearing in the general cost formula. Although 

this approach may appear to beg the issue, it has the distinct ad- 

vantage of allowing an analysis of radar cost optimize ion that is 

uniformly applicable to a wide variety of phased array system designs. 
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With this in mind, it was decided that the smallest possible set of 

phased array physical attributes that should be included in a general 

cost formula consists of the following: 

(1) Average transmitted power, p . 

(2) Number of transmitter elements, N . 

(3) Number of receiver elements, N . 

Up to this point we have talked about the cost of phased array 

radars in a general way. Before proceeding further, some clarifica- 

tion is in order. In discussing costs of phased array radars, there 

are severtil cost categories that should be considered: 

• Design and development cost. 

• Hardware cost. 

c Signal processing cost. 

• Installation, checkout, and monitoring cost. 

• Facilities and/or supporting structure cost. 

• Maintenance and operating cost, program management. 

Included in hardware cost will be the total cost to manufacture 

all components and assemble snH factory test all subsystems of radar 

hardware. This will include the cost of any special purpose beam 

steering computers but not the cost of a general purpose signal pro- 

cessing computer that would be included under signal processing cost. 

In applying these categories to phased array radars, the herd- 

ware cost can be easily related to the number of elements used in the 

array. Design and development cost is closely geared to the number 

of state-of-the-art components that the system will use; it is es- 

sentially independent of the size of the resulting array. Signal 
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processing cost will depend more on the mission functions to be per- 

formed than on the size of the array radar.  While maintenance and 

operating costs depend on the number of elements in the array, they 

are recurring costs and are best considered separately from the 

other categories, which represent investment cost. The cost of the 

building that houses the array and its ancillary equipment can be 

related to the area of the array (or faces) and to th« hardness re- 

quirement. This is important only In the case of array thinning and 

where the hardening cost is significant.  If the array area is small, 

the ancillary equipment operational area will require a separate 

building or an underground facility. 

In attempting to relate radar performance to cost, we will be 

concerned primarily in this study with the hardware fabrication and 

* 
installation cost.  In this way the radar cost will be proportional 

to the number of transmitter and receiver elements in the array, and 

the module costs will be less sensitive to the number of elements 

than would be the case if we prorated the cost of design and develop- 

ment, installation, checkout, monitoring, and facilities development 

among the total number of elements. This being the case, the follow- 

ing cost formula seems reasonable: 

(21) C - C N + C pNt + C N x ' t t   pKt t   r r 

where C - hardware cost of a phased array radar system (in $), 

C ■ cost of manufacturing and assembling a transmitter module 
(in $/element), 

The nonhardware cost to deploy a phased array radar will be the 
subject of another study. 
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C = cost of producing average power (in $/watt) 
P 

C * cost of manufacturing and assembling a receiver module 

(in $/element), 

and N , N , and p are as previously defined. 

COST OPTIMIZATION 

The approach to be used assumes that in designing an array radar 

one seeks to select those transmit and receive array configurations 

that achieve the desired performance at minimum cost.  If the radar 

is to be used only for surveillance, then, as shown in the first part 

of Section III, the influence of the performance specifications is 

reflected through the required search parameter T = p N N , which 

in the case of a filled array is equivalent to the power-aperture 

2 
product PA divided by \  Ik.     If the radar is to be used only for 

tracking, then performance will be influenced by the gain of the 

transmitting antenna, and, as shown in the second part of Section III, 

- 2 2 
the parameter of importance is T    = pO .  For combined applications, 

where the same array radar is to be used for both search and track 

functions, it would be fortuitous if the minimum cost errays for the 

search function were identical to the minimum cost arrays for track- 

ing.  In such combined applications, a minimum cost array configura- 

tion can be designed subject to the combined constraint imposed by 

both r and T .  In the following three subsections, optimum array 
S       C 

configurations will be derived separately for a search radar, a 

tracking radar, and a radar combining the search and track functions. 
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Optlmum Search Array Radar 

To derive the minimum cost array configuration, the method of 

Lagrange multipliers will be applied to Eq. (21), subject to the 

search performance constraint of Eq. (8).  The cost will be mini- 

mized by choosing the proper values for N  N , assuming that the 

cost coefficients C , C , C are specified and that p^ takes on one t' r' p     v rt 

of several possible values established by available power tubes in 

a given frequency band. Obviously, C and C will also depend on 

the frequency band chosen. 

Thus 

(22)       C - (Cfc + Cpp"t)Nt + CrNr + 5(ptNtNr - r§) , 

<23> If ' <Ct + Vt> + ^tNr - °  • 

<24> If " Cr + 5Pt"t * °  • r 

(25) ff - ptNtNr - f. - 0 . 

Solving (23) for § and substitution into (24) yields 

(C + C p ) 
(26) Nr - t^f*    N{ 

Combining (25) and (26) yields, for the optimum number of transmitter 

and receiver elements, 

it 
L. Cartledge, "Minimum-cost Array Configurations," Appendix A, 

Part 3, Chapter IV, in Phased Array Radar Studies. Technical Report No. 
299, M.I.T., Lincoln Laboratory, Lexington, Mass., 20 February 1963. 
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(27a) 

(27b) 

opt \pt   
(ctVtV 

opt       XFt ' 

Note that by substituting Eq. (26) into the cost formula of Eq. (21), 

we have 

(28) 
opt 
search 

2(Ct + Cppt) Nfc 2C N 
r r 

opt opt 

Hence the optimum cost configuration occurs when the receive array 

costs as much as the combined cost of the transmit array and the cost 

of producing the requisite average power. 

Substituting the expression for N from Eq. (27a) into Eq. (28) 

yields 

(29) opt 
search 

cr(ct + c ;t)J 
h 

And,  from Eq.   (8) we have 

k    D2/nv* 
(30) ■ (*•»-> V *) 

,* Since the optimum search cost is proportional to T  (for fixed cost 

coefficients and p ), we see that for a given required performance 

(i.e., fixed E/N-) the cost of «n optimum search array is proportional 

to 
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W 
The dependence of cost on wavelength was deliberately omitted since 

the cost coefficients and p will probably be functions of X. 

Optimum Tracking Array Radar 

Once again the method of Lagrange multipliers is applied to the 

cost formula of Eq. (21); however, in this case the constraint will 

be imposed by the tracking parameter T of Eq. (20). 

Thus 

(31) C =  (Ct + C pt)Nt + CrNr + 5(ptH^ - Tt)   , 

<32> If "  <Ct + Vt> + **t*£ ' °  • t r 

(33) §§- - Cr + 2g;tN2
tNr - 0 

(34) 90      - „2„2 
sr = ptNtNr ■ rt - ° 

Solving Eq.   (32)  for §  and substitution into Eq.   (33)  yields 

(35) 
C.  + C p. 

C    „ P C N, 

This is identical to Eq. (26) so that once again for optimum design 

the total cost is equally divided between the transmit and receive 

functions. 

Combining Eqs. (34) and (35) yields for the optimum number of 

transmitter and receiver elements 
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(36a) N. 
t 
opt 

Pt <Ct + Co)
2 

(36b) N 
r 
opt 

H^)l 
Again for the optimum cost array Nr  is proportional to Nt  , 

opt opt 

and the total array cost is also proportional to Nt . Substituting 
or' 5pt 

Eq. (36) into the cost formula yields 

(37)   Copt  « 2(Ct + Cppt)Nt 

track 
[^  [Cr(Ct + CpPt>] 

opt 

From Eq. (37) we see that the cost of the optimum tracking array is 

V 
proportional to F\    Hence, from Eq. (20), 

(38) C     « 
opt 
track 

rt  apex°ey
Td 

R  for single target. 

If instead of tracking one target in a dwell time T,, as is as- 

sumed above, the requirement is to track M targets in the dame total 

time, then T   would be multiplied by M if the targets were all of the 

same cross section.  In the more general case of M different targets 

at various ranges and having different required angular accuracies 

for each, we would have 

(39) 

M 

l\i 1 

track  k-1  \   x  y  ky 
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Once again, with respect to wavelength, all that can be said is 

that If the cost coefficients and power per module are the same at 

two separate frequencies, then from Eqs. (20v and (37) the cost of 

the optimum tracking array radar will vary as 1/X . 

Optimum Combined Search and Track Array Radar 

If the same array is to perform simultaneously the search and 

track functions, then it is possible to optimize the cost subject 

to the constraints imposed by both r and T . 
t      8 

If p and p denote the respective average powers per transmitter 
S L 

module required to perform the search and track functions, a suitable 

approach to cost optimization is to use the Lagrange multiplier ap- 

proach with a constraint on the sum T + T  . From Eqs. (8), (20), 
s   c 

and (21), we have 

(40) C - CtNt + Cp(pt + p"a)Nt + CrNr 

+ 5[P8Vr + PtNtNr " (rs + rt^ • 

Taking partial derivatives with respect to N  N , and §, 

e\C — — — —    2 
(41a) it - Ct + Cp(pt + P.> + 5<P.Nr + 2PtW - ° • 

(41b) g    - Cr + § (;8Nt + 27tN2Nr)  - 0  , 
r 

(4ic)        §f - PgNtNr + ptNtNr - (r9 + rt) - o . 

Solving Eq. (41b) for g, substituting the result Into Eq. (41a), and 

simplifying the resulting expression by factoring yields: 
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(42)     [p + 2ptNtNrj[Nt(Ct + C  Gt  * Pg)) - M^] - 0 

Since the first factor is always positive, the second bracketed fac- 

tor must be zero to satisfy Eq. (42). This yields the following re- 

lationship between N and N : 

(43) N 
[ct + c (pt + ;g)] 

This agrees in form with both Eqs. (26) and (35) if in each of these 

equations we replace the former symbol for average power per module, 

p , by the sum p + p , which is the total average power per module 

in the combined case. 

Substituting Eq. (43) into Eq. (41c) results in the following 

quartic equation in N : 

(44) 
4  *s 

Nt + - 

Pt [Ct + Cp<Pt + P.)] C 

„2 
(r8 + rt) 

pt  
[ct + cP

(pt + P.)]2 

It may be t      at Eq. (44) has a single positive solution 

for N (a double root) given by 

(45a) N 
t 
opt 

2[Ct + C (pt + pf)] 

PV ^c-. + iyl*  ;, k 

Combining (45a) with (43) yields for the optimum number of receiver 

modules 



-28- 

(45b) N 
K+ ypt+ p"»>] 

r 
opt 

2C 

VV x 4(r_ + r j 4  ;. 

j 

Substituting these values into the cost equation yields 

(46) C 
opt 
combined 

2C [C + C (p + p )] 
r t   p rt  rs ®-m *   7. 

The optimum cost formula in the combined case may easily be shown to 

agree with the separate cost optimization formulas for tracking (Eq. 

(37)) and search (Eq. (29)).  For a tracking radar, if we set T - 0 
s 

and p = 0 in Eq. (46), the result is identical to Eq. (37).  In the 

case of a search radar, T    *  0 and p = 0.  In this case we revert to 

Eq. (44), which becomes a quadratic in N .  Solving for N yields an 

expression identical to Eq. (28), resulting in an optimum cost formula 

in agreement with Eq. (29). 

Comparing Eqs. (45) and (46) for the optimum design combining 

* 
search and track to the corresponding equations for a search radar 

or a tracking radar,  it is clearly easier to scale cost versus per- 

formance in either of the separate cases than it is in the case of 

combining search and track.  It was therefore decided that for sim- 

plicity, the cost examples discussed in Section V would be limited to 

separate search and track radars.  In practice, in many cases, one or 

the other of the requirements fl\ or f ) will dominate the design 
t    s 

Equations (27) and (29). 

Equations (36) and (37), 
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configuration and resulting cost.  In such cases, the secondary func- 

tion can be added for the small incremental cost required to produce 

the additional required average power. The resulting design, although 

nonoptimum, will differ only slightly from an optimum design.  This 

point will be discussed further in Section V. 

In summary, equations have been derived for optimum hardware cost 

separately for a search radar (Eq. (29)), a tracking radar (Eq. (37)) 

and a combined simultaneous search and track radar in terms of 

• The cost coefficients C , C , C . 
t' r» p 

• The average power per element, p . 

• The performance parameters T (Eq. (8)) and T  (Eq. (20)). 

From a radar's operational performance specifications the param- 

eters T and/or r may be directly evaluated from Eq. (8) and/or Eq. 
S L 

(20), respectively. To evaluate hardware cost, all that remains is to 

specify p and make appropriate estimates of the cost coefficients C , 

C , and C based on the limited cost data presently available.  In 

Section V, a cost sensitivity analysis will be presented to exhibit 

the dependence of the hardware cost estimate on changes in performance 

requirements and uncertainties in the several cost coefficients. Fin- 

ally, in Section VI, the efficacy of array thinning as a cost reduction 

technique will be investigated. 
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V. COST EXAMPLES 

In this section several examples will be presented to Illus- 

trate the cost optimisation design procedure outlined in Section IV. 

Separate array designs will be presented for both the search and 

track functions in tenr.s of the respective operational requirements. 

Since the optimum design procedure presupposes knowledge of the mod- 

ule cost coefficients, and since in fact these costs may be little 

more than assumed values subject to large uncertainties prior to 

manufacturing, the resulting designs may be ex post facto nonoptlmum. 

Accordingly, several examples of nonoptlmum design configurations and 

cost estimates will be presented to determine the sensitivity of 

hardware cost to the lack of a priori knowledge of the module cost 

coefficients. Similarly, the sensitivity of optimum hardware cost 

to variations in the cost coefficients C , C , and C will be ex- 
t* r'     p 

amined to determine whether or not any of the coefficients have a 

sufficiently more critical influence on total cost to warrant a more 

roncerted effort in arriving at its estimate than is required for the 

other coefficients. 

LONG-RAMGE SURVEILLANCE RADAR 

As an example of a search radar, consider a long-range surveil- 

lance radar designed to detect targets that penetrate a fan-shaped 

volume between some specified minimum and maximum ranges. 

It will be assumed that targets of interest penetrate the search 

volume in the elevation direction with some constant transverse veloc- 

ity V .  If the coverage volume is A0 in azimuth by A6 deg in elevation, 
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then the time for a target to traverse the coverage volume would be 

(47) At - —^  

In a mechanically scanned radar the search routine must be tai- 

lored to the minimum traversal time corresponding to a target entering 

the surveillance volume at minimum range. This problem is alleviated 

with phased array radars due to the flexibility of beam steering avail- 

able to the system designer. From Eq. (3) the average power will de- 

pend on the maximum target detection range. To reduce the required 

average power, and thereby reduce the radar cost, the frame time in 

Eq. (3) can be equated to the traversal time At of Eq. (47) for the 

maximum range of interest.  In this way, the average power will only 

3 4 
Increase as R instead of R . To ensure the detection of targets 

traversing the surveillance volume at minimum range, a low power sub- 

routine can be included in the search program using either beam 

broadening or reduced frame time. Ihese techniques will not signif- 

icantly increase the radar cost and hence need not be considered 

further for our purposes. 

If T is equated to At of Eq. (47) and substituted into Eq. (3), 

we have 

OV 
(48) P • A ' a  - 4nR3kT TeffL W (l0) 

Referring to the geometry of Fig. 2, we have 
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dO 
|dA|       R    gin 8 dB d^ 

R 

n - j    [ 2 »in e de d0 
ni  ei 

- A0 (cos 9.  - cos 92) 

Fig.  2--Surveillance geometry 0 - A0 A9 

or 

(49) 
A9 

S5 A0 

As was indicated in Section III, the probability of detecting a 

target during a single scan, which we denote as PD, is related to both 

the signal-to-noise ratio, E/N_, and the false alarm probability, P . 

The exact form of the relationship between these parameters depends 

on the statistical description of the corrupting noise present at the 

receiver and the type of signal processing performed, and the type of 

target, i.e., fluctuating versus nonfluctuatlng cross section. Much 

research has been devoted to deriving various optimum detection 

schemes (e.g., sequential detection), based on assumedly available 

a priori statistical knowledge.  Rather than dwell en such detailed 

questions, it will suffice for our purposes to use as representative 

* 
performance the optimum detection curves derived by Manasse for Gaus- 

sian noise and a nonfluctuatlng target model, as shown in Fig. 3. The 

curves of Fig. 3 can be used in conjunction with Eq. (48) to derive 

R. Manasse, The Application of the Theory of Signal Detectibility 
to Signals with unknown Polarization and Phase. Group Report 32-25, 
M.I.T., Lincoln Laboratory, Lexington, Mass., August 1956. 
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Fig. 3--Typical probability of detection (PD) versus probability of 
false alarm (Pp) curves for optimum receiver (from Manasse) 
(known polarization, unknown phase) 
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curves of detection probability, P  veraus range, R, for several 

values of the product P • A • a  and false, alarm probabilities of 10 

-8 
and 10" . The results are plot Led in Fig. 4.  In arriving at the 

curves of Fig. 4, the following system parameters were fixed: 

• Effective system temperature, T ff - 650°K. This would cor- 

respond roughly to a receiver noi.se figure of 3.5 db and a 

source temperature of 290°K at the antenna terminals (i.e., 

T - ■ 290(NF - 1), where NF is the receiver noise figure). 

• System loss factor, L - 10 db. This factor includes plumbing 

losses, atmospheric attenuation, and system degradation due 

to nonoptimum detection processing. This assumed loss factor 

should be relatively conservative for state-of-the-art phased 

array radar systems over the frequency region from UHF to 

X band. 

• Azimuth coverage M>  « 90 deg (1.57 radians). 

Referring to the curves of Fig. 4, we shall arbitrarily choose 

— 9 2   2 
the curves for P • A • a  ■ 10 watts • ft • m as being repre- 

sentative of the requirements for long-range surveillance radars. 

Furthermore, if we limit our attention to the case of a target having 

2 9 
a 1-m cross section, the required power aperature product is 10 

2 
watts • ft . The search parameter T is 

(50) rs - ?NtNr " A ?Ae " 4 (">') • 
A        K 

For the frequency interval from 100 Mc to 10 KMc, the corresponding 

range of values for T   would be 
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P = average transmitter power (warts) 

Ae = effective receive aperture (sq ft) 

o = target cross section (sq meters) 

Teff = 650   K 

L =  <0 db (system losses) 

Pp ■ false alarm probability 

Vf - 3 n mi/sec 

A+ ■ 90T (1.57 radians) 

1L ,        R 

4 5 6 7 8 9 

Range (thousands of n mi) 

12   13 

Fig. 4--Detection probability versus range on a single scan 
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(51) 4(107) sr = pNN £ 4(10U) \/   sttr 

In order to evaluate the cost and configuration of an optimally 

configured search array based on Eqs. (27) through (30) of Section IV, 

it is necessary to select values for the coefficients C , C , C , and 
t' p' r' 

p . There is not available a sufficient quantity of phased array 

research and development program cost data on which estimates of the 

above coefficients can be based. Hence, rather than decide on spe- 

cific values for these coefficients, a parametric approach will be 

used whereby each coefficient is allowed to vary over a range interval. 

The intervals chosen are based on our own investigations and on dis- 

cussions with personnel of several organizations engaged in phased 

array development, and are believed to be representative of current 

costs and capabilities. 

Accordingly the following ranges of coefficients were chosen: 

(52) 

(    $100 £ C £ $2000 , 

$100 iCti $4000 , 

< 
$5  i C * 15 $/watt , 

P 

1 * P * 250 watts 

For convenience the optimum cost formula for a search array 

radar derived in Eq. (29) is rewritten below: 

(29) 
opt 
search 

I" A«   \ 1 c [ —+ c Ir 
h 
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Because of the large number of variables, this result can be 

presented in several formats. For example, in Fig. 5, by fixing 

T , C , and p , C0pt   is plotted as a function of C for each of 
•  P     t      search c 

9 
several values of C . The choice of T - 10 in Fig. 5 would cor- 

r s 

respond to a frequency of approximately 500 Mc (i.e., X — 2 ft in 

Eq. (50)) in order to achieve the search performance in Fig. 4 for 

—     9 2 
PA * 10 watts • ft . However, the cost curves of Fig. 5, shown 

for a fixed T  ,  would apply to arrays designed at other frequencies 

and having different power aperture products and hence different 

search performance, provided X and PA ... satisfy Eq. (50). 

Referring to Eq. (29), we see that perhaps a more useful form 

of presentation is shown in Fig. 6, where CQpt   is plotted as 
search 

a function of the combined variable [(C /p ) + C ]. By combining 

c,-i P,.» an<* C , these curves are applicable to a variety of cases 

since only T    is fixed. Furthermore, on log-log paper the cost curves 
s 

are straight lines so that additional curves can be easily added by 

evaluating a single new cost point (for each new curve) using Eq. (29) 

and a reference point on one of the existing curves. 

The influence of T    is shown in Fig. 7, where Copt   is plotted 
8 search 

versus T for each of several sets of values of [(C /p ) + C ] and 
s x t rt    p 

C . Since these curves are also straight lines on log-log paper, the 

same general comments made with reference to Fig. 6 will apply. 

While the curves of Figs. 5 through 7 indicate the optimum hard- 

ware cost as a function of both performance (i.e., T  ) and the several 
s 

cost coefficients, they do not show the influence of changes in the 

cost coefficients on the resulting array configurations. 
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Fig.  5--0ptlmuir search radar cost  (C    = 5,  p    = 30, T    = 10 ) 
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Flg. 6--0ptimum search radar cost (r = 109) 
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To exhibit these effects, four separate sets of cost coefficients 

will be chosen to correspond to four distinct module design approacnes 

arising from the choice of low power versus high power modules In con- 

Junction with narrow band versus wide band operation. The influence 

of bandwidth on the cost coefficients is exhibited by multiplying 

C and C by a factor of two in going from narrow band to wide band 

operation.  If, as has been suggested in the case of high power trans- 

mitters, module coat is proportional to bandwidth to the one-fourth 

power, then the factor of two in cost would correspond to a percentage 

** 
bandwidth change by a factor of 16  (e.g., a narrow band case of 0.6 

percent bandwidth versus a wide band case of 10 percent bandwidth). 

Case 1. Narrow Band Array—Low Power Module (UHF - L Band) 

Let p" = 30 watts, C - $1100, C = $1000. C = $5/watt. 
t * t r p 

Let 
4(PA ) 

T ■  5— s 10   watts . 

For f = 440 Mc, X - 2.24 ft; hence PA = 1.25(109).  From Eq. (27a), 

Nt 
opt 

r c s r 109 103 Ji 
30    (1100 + 5(30)) 5160. 

?t       <Ct+Vt> 

Using Eq„   (26), 

/C     +   C   D \ / \ It nFt-\ limn x «;/->n\\ 
6450. \ ■ \ (H^) • »"(ii^pi) 

opt       opt 

* 
N. E. Feldman (The RAND Corporation), private t >mmunication. 

** 
Phasing may also add to the module cost it -<=oi time delay 

scanning is required.  In that case, the one-fourth power cost versus 
bandwidth dependence would be altered. 
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Finally, from Eq. (28), 

opt 
search 
(hardware) 

2(C_ + C p„)N   - 2C N 
t   prt' t     r r 

opt opt 

2(1100 + 5(30))5160 - $12.9(106) 

This cost figure could have been obtained from either Fig. 5 or 

Fig. 6, but Fig. 6 is the more useful since it requires fewer assumed 

fixed parameters. To use Fig. 6, we must first evaluate the additional 

combined parameter 

A t c\ - ±122 
k     j     3° 

+ 5 = 41.7. 

If we were interested in extrapolating the optimum radar cost for dif- 

ferent values of the search performance parameter T  , then Fig. 7 
s 

would be the most useful tool. In this case it would be necessary to 

extrapolate between the several specific values of [(C /p ) + C ] 

used in Fig. 7. 

Case 2. Narrow Band Array--High Power Module (UHF - L Band) 

Let pt - 250 watts, Ct - $3750, Cr - $1000, C - $5/watt, Tf - 

9   —   2 — 
10 - 4PA /X . Comparing these values for p and C with those for 

Case 1, and assuming 

(53) 

we have 

C    « P? , t      rt   ' 

3750     /250\n 

TI7Jff " \ 30 
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from which we find 

(54) n = 0.58 

The constant of proportionality in Eq. (53) may now be found; thus 

(55) Ct " K?t • 

3750 - K(250) 
0.58 

(56) K - 153 . 

Combining Eqs. (54) through (56), we arrive at the following equation, 

which we can use to relate narrow band transmitter module cost to 

average power: 

(57) Ct - 153(pt)
0,58  $, with pfc in watts . 

For the case at hand we have from Eq. (27a), 

N. 
t 
opt Pt (ct + c ?t) V250 

1000 

25(J (3750 + 5(250)) 
894 

From Eq. (26), 

\ - -« f-4^) - >*^F*) 4470 

opt   opt 

And from Eq. (28), 

opt 
search 
(hardware) 

2(Cfc + Cpt)Nt      - 2(5000)894 - $8.94(106) 

opt 
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This cost figure can be independently verified by using either 

Fig 6 or Fig. 7.  First we evaluate the combined parameter 

^ + C - ^50 + 5 = 20 - + Cp   250 + 5 Z° ' 

Using this value, along with the given values of C and T in Figs. 6 
r     s 

and 7, yields the desired cost check. 

C^  3. Wide Band--Low Power Module (L-X Band) 

For "wide bandwidth" operation, as indicated earlier, both the 

transmitter and receiver cost coefficients will be multiplied by a 

factor of two. 

Thus, let p" = 110 watts, T    = 109, C = $2000, C = $5/watt. •    rt ' a '    r      ' p 

In Eq. (57) we replace K by K1 - 2K; hence 

Ct = K'(Pt
)0'58 " 306 ' (110>0,58 - 4680 » 

CM!) 

K1 = 2(153) = 306. 

Thus using Eqs. (27a), (26), and (28), we find 

/10?_    2000 
Wt   V110 (4680 + 5(110))   l0bH  ' 
opt 

5230 
Nr  - 2Ö5o 1864 " 487° • 
opt 

C - 2N  C = 2(4870)2000 - $19.5(106) opt r  r 
search       opt 
(hardware) 
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Again we evaluate the parameter 

Figure 6 provides the simplest check on the a jve cost using the 

curve for C - $2000. 

Case 4. Wide Band--High Power Module (L-X Band) 

Let p\ » 500 wntts, C = $2000, C = $5/watt. Once again we t * r P 
9 

choose as our performance reference value F = 10 .  Here 

Ct = $2(153)pt
0,58 - 306(500)°'58 = $11,275 . 

Thus, following the same procedure as In the previous cases, we find 

N   . Afi!     2000       = Soo Wt    V500 (11,275 + 5(500»   "ö 

opt 

i -I 77c 
Nr  ' "loOO (538) = 3708 • 
opt 

Copt      = 2CrNr  = 2(Ct + Cppt)Nt  - 2(2000)3708 

search opt opt 
(hardware) 

= $14.8(106) . 

As a check on this cost, once again we refer to Fig. 6 after 

evaluating the parameter 

l+s)-^*5-"-5 
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Using this parameter along with the curve for C * $2000, the above 

cost is verified. 

TRACKING RADAR 

In this subsection, the optimum design and cost of several track- 

ing arrays will be presented. Starting with an assumed set of tracking 

system requirements, the tracking parameter of Eq. (20) can be evalua- 

ted, and the tracking design and cost formulas derived in Eqs. (35), 

(36), and (37) will be evaluated for the sets of coefficients (p , C , 

C , C ) corresponding to each of the four case« previously presented. 

Tracking System Parameters 

For purposes of illustration the radar will be required to track 

2 
a target having a cross section of one m with an angle accuracy of 

0.005 radian (approximately 0.3 deg) employing a tracking dwell time 

of 60 seconds for a slant range of 3000 n mi. The pertinent system 

parameters are summarized below: 

R = 3000 n ml , Td ■ 60 seconds 

a ,     2 
■ 1 m    , L - 10 db   , 

°e = aa    = 0.005 radian T 
eff « 650° K • 

Substituting these specific requirements into Eq. (20), we find the 

tracking parameter r to be 

„,,    r   "NV  384R kTeffL   7.26(1013)    ,„ (59)    rt - PtNtNr - ~2 -J <■  watts. 
noX °e ae Td   K 

x y 
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For differing values of the various system parameters, the above 

value of r can easily be scaled. Taking into account what are felt 

to be reasonable intervals of variation for each of the variables in 

the equation for T , the following range of values of T should in- 

clude most realistic sets of system requirements: 

(60) io10 * rt - P>$ * io18 

If we refer to Eq. (37), a reasonable choice for presenting 

tracking cost curves is to plot Copt  versus the combined parameter 
track 

[(C + C p_)/(p^) ] for each of several values of C and a fixed T . 
t   prt  rt r t 

14 
These curves are plotted in Fig. 8 for T - 10 ; for C - $100, $250, 

$500, $1000, $2000; and for 

50 * 

ct + y t 
*  1000  $/(watt) 

Figure 9 similarly presents C0pt  versus r. for each of several 
track t 

cc<mbinations of C    and the parameter 

Ct + CpPt 

7* (Pt) 

Once again to illustrate the influence of specific sets of cost 

coefficients on the resulting optimum physical design (i.e., choice 

of N and N ) and the optimum tracking cost, the same four cases pre- 

viously considered for search will be reevaluated for a tracking radar 

assuming r » 10 
14 
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-     -g I06- 

100 

10 J I I I L _uL J i i i i L_J_ 

10 I02 10s 

14 
Fig. 8--0ptimum tracking radar cost (f = 10 ) 
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Case 1. Narrow Band Array--Low Power Module (UHF - L Band). 

Let pt - 30 watts, C - $1100, Cr - $1000, C - $5/watt, rt wu. 
and f - 1160 Mc  (L band). 

From Eq.   (36a), 

Nt      - 
opt 

r               2       i 
[Ft           Cr         1 

k 

}t (ct+ cppt)2_ 

10 
30 

14 1* 
10 

(1100 + 150)' 
1208 

Using Eq.   (35), 

N r 
opt 

/ÜLlfi\,    .im 
I      C / nt 1000 
V       r        I    opt 

(1208)  - 1510 

Next evaluate 

ct + yt 

«,> 

1100 + 150 

J3Ö 
228 

Reference to Fig. 8 or Eq. (37) yields the optimum tracking radar cost: 

Copt  " 2(Ct + CpPt
)Nt  = $3.02(106) . 

track opt 

For reference to the forthcoming discussion, the available search 

parameter f for this tracking array will also be evaluated: 

r » Pt
N
t
N
r " 30(1.208)(1.51)10

6 - 5.47(107) . 

The corresponding available power aperture product is 

pA . LLl . (0.85)2p.47107) m 6        ,  2 
e   4 4 
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Thls available power aperture is down by a factor of over 100 from the 

9 2 
10 watts * ft required for the search performance previously dis- 

cussed. Hence this radar operating in a search mode would have a 

range capability of 

P>!>5<106)1 
L  10»  J 

Rj » 3000 • 9-95(^° A    - 950  n mi 

(see Eq. (3)), assuming the other system parameters to be unchanged. 

Case 2. Narrow Band Array--High Power Module (UHF - L Band) 

Let pfc »■ 250 watts, Cfc = $3750, Cr - $1000, C - $5/watt, r - 

101 , and f - 1160 Mc. From £qs. (36a) and (35), 

,   [io14    io6   1* . 
l?t      L

250 [3750 + 5(250)]2J 
356 

and 

N        . [3750^5(250?]   .  356 . 1780 
r 
opt 

Next evaluate 

Ct + Vt 

& 

3750 + 5(250) 

7250 
316 

From Fig. 8 or Eq. (37), 

Copt  " 2(Ct + CpPt)Nt  " $3'56(1° > 
track opt 

Once again the corresponding available search parameter F is 
8 
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r = ptNN = 250(356)1780 = 1.58(10 ) . 
s   t t r 

The available power aperture product is 

2 2 
PA = V T = ^°'?5^  1.58(108) = 2.88(107)  watts . ft2 

e   4  s     4 

Again this power aperture is less than that required for the speci 

fled search performance. 

Case 3.  Wide Band—Low Power Module (L-X Band) 

Let pt = 110 watts, Cfc = $4680, Cr = $2000, C = $5/watt, r : 

1014, and f = 1160 Mc.  From Eqs. (36a) and (35), 

N. 
t 
opt 

I U0 (4680 + 5(110))2J 
602 

■, - <"8?0;„550) • «« ■ ■»« 
opt 

Next evaluate 

ct+ Vt 
fft>* 

5230 

(110)' 
= 493 

From Fig. 8 or Eq. (37), 

C  .   = 2(C + C pjN 
opt     x t   p t t 
track opt 

= $6.3(106) 

The available search parameter f is 

r    = ptN N    =  110(602)1576 <= 1.04(10 ) sttr ' 
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and 

PA = -2- r 
e  4  s 

-^L85l_ lj04(lo8) = 1.89(10 )  watts •ft2. 

Case 4. Wide Band--Hlgh Power Module (L-X Band) 

Let pt - 500 watts, Ct = $11,275, Cf = $2000, C = $5/watt, I"£ 

1014, and f - 1160 Mc. From Eqs. (36a) and (35), 

N    ,Qg      Mio6? f, 
;pt  L

500 (11,275 + 2500)
2J 

255 , 

K   . (H.275^ 2500) . 255 m  1760 
r 
opt 

Next, 

Ct + Cppt 

<Pt>* 

13-^Z5 „ 616 
(500)* 

From Fig. 8 or Eq. (37), 

Copt  " 2(Ct + CpPt)Nt  -.$7.02(10°) 

track opt 

The available search parameter T is 
s 

rs " ptNtNr = 50°(255)i760 - 2.24(10°) 

and 

?Ae " V rs " ^'l5)    (2'24 * lt)8) " 4-°7<107)  watts . ft2 . 
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COST COMPARISONS 

As an aid to the discussion, the optinum cost formulas for search 

and track derived in Eqs. (29) and (37) are rewritten here in modified 

form. Thus 

h 

(29) 

and 

(37) 

opt 
search 

opt 
track 

2T i"¥ 
Equation (29) shows that the cost for an optimum search array 

radar is proportional to the square root of the total cost per aver- 

age watt for the transmitter (assuming fixed values for C and T ). 
L 9 

Hence, as was indicated in the four search design cases presented, 

use of higher power modules with lower cost per watt results in less 

expensive search arrays. 

However, in the case of the tracking array design, the situation 

is reversed, so that the use of higher power modules (with less cost 

per average watt) results in higher optimum cost tracking arrays (e.g. , 

compare Case 1 with 2 or Case 3 with 4).  This may be explained as 

follows:  In Eqs. (55) through (57) the transmitter module cost is 

related to average power by the relation 

Ct = K(Pt
)n» n " °'58 > * 

Substituting this result into Eq. (37) yields 
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<61>        Gopt "^tkK>n"i + cp(Pt^)l • 
track     L X ' J 

From Eq. (61) it is clear that the cost ot the optimum tracking 

radar will be an Increasing function of p for all n 2 1/2; and this 

condition is satisfied for the value n • 0,58 used in the cost example 

(see Eq. (57)). 

PERFORMANCE COMPARISONS 

In the discussion of the four tracking designs it was shown that 

in each case the tracking designs would not have sufficient capability 

to achieve the required search performance previously stipulated.  It 

follows conversely that each of the search array designs would have 

more than sufficient capability to achieve the required tracking per- 

formance (i.e., the available T    exceeds the required value for each 

of the search cases). 

However, contrary to .'hat one might expect, the above result is 

not part of some n:ore general theorem but results rather from the 

combination of the specific tracking and search requirements and the 

limited range of values of p considered. The following discussion 

should help clarify the conditions leading to the above result. 

From Eqs. (8) and (20) the search and track parameters for an 

array radar may be rewritten as 

(8a) r   ■ 16nR4 s 
req 

/kTeffL\ Q E 

\  X20 ) Tf 50 ' 
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(8b) 

(20a) 

(20b) 

avail 

384 4/kTeffL\   1  J_ 
fc    =  n      V x2a / ae °e Td ' 
req x y 

t 
avail 

-22 

In rewriting these equations subscripts have been u.ied to make 

clear the difference between the required values of T and T  , re- 

sulting from specific performance requirements, and the corresponding 

available values of T    and T , which are only related to the values 
t     s' J 

of pt, N . and N . rt*  t'     r 

From Eqs. (8b) and (20b) we have 

t 

(62) 
avail 

r 
8 
avail 

■ N.N . t r ' 

and from Eqs. (8a) and (20a), 

rt 
req  24 

r    "2 8     TT 

req 

1     1 

(63) 
*e °e  Td 

x y 
a    E 
T" ' N 
-f   0 

There are two separate cases to be considered, each having two alter- 

native subcases. 

Case A 

Let 

(64) 
M N = 
t r r 

t      r 
avail ..  req 

8 ^ 
avail   roq 
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Al. Search Radar. Tor a search radar. T8    ■ r8  by design. 
avail 

Therefore from Eq. (64j, 
req 

(65) 

avail   req 

*L—Tracking Radar. For a tracking radar, rt    ■ T   by 
avail   req 

design. Again from Eq. (64), 

(66) r   ir s     's 
avail   req 

Case B 

Let 

(67) N N . _ayail fi _reS 
t r  r 

8        8 
avail   req 

Bl. Search Radar. Once again by design, T8    - r. ; hence 

from Eq. (67). 
avail req 

(68) rt      *re 
avail   req 

B2. Tracking Rada_r,  By design, rt    - Tt  , from which Eq 
avail   req H 

(67) yields 

(69) 
rs      *? 
avail 

s 
req 

It is clear that for the specific set of search and track require- 

ments given In the illustrative examples, the situation corresponds to 

Case A. Referring to Eqs. (50) and (59), we see that 
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(70) 
reg m  7.26(1Q13)/X2 

rs    4(io9)/x2 

req 

1.82(1<T) 

The same result could be obtained directly from Eq. (63), which also 

exhibits the fact that this ratio is independent of the wavelength X. 

For each of the search array designs, the choice of p resulted in a 

value of N N such that the inequality of Case A (Eq. (64)) was satis- 

fied, leading to the conclusions or Eqs. (65) and (66). However, by 

a sufficient increase in trading requirements and/or a decrease in 

search requirements, the ratio in Eq. (70) could be increased so that 

the inequality of Case B (Eq. (67)) would be satisfied, resulting in 

the conclusions of Eqs. (68) and (69). 

Clearly, if the same radar is to be capable of alternately per- 

forming either the tracking or search functions, Cases Al and B2 are 

the only acceptable alternatives.  It is often possible to achieve 

the operational flexibility affordec. by Cases Al and B2 without over- 

designing the radar for its primary function by either of the follow- 

ing approaches: 

• For a search radar, the average power per module, p  should 

be chosen sufficiently low to ensure the inequality of Eq. 

(64), i.e., rt        *rt   . 
avail   req 

• For a tracking radar, the average power per module should be 

chosen sufficiently high to ensure the inequality of Eq. (67), 

avail   feq 

However, this approach to design flexibility must be paid for by in- 

creased cost since the use of either lower power modules for search 
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or higher power modules for tracking results in an Increase in the 

optimum hardware cost as shown in the discussion. 

NCHOPTIMIM DESIGNS 

Reduced Transmitter Power 

To illustrate the cost penalty incurred if for some reason the 

optimum design configuration is not employed, consider the search 

array design of Case 2.  Suppose the available average power per 

transmitter module is reduced by a factor of 10 and the cost coeffi- 

cients remain unchanged. This fact may not become evident until after 

the initial optimum configuration 1« designed, and it may not be 

* 
feasible to reoptimize the design.  In such a case, a nonoptlmum 

design that achieves the same required T would be represented by 

increasing N tenfold to account for the reduced p^. Thus p„ = 25 
t rt      rt 

P 
watts, Ct - $3750, Cf - $1000, 0    - $5/watt, and fs - 10

9. Then 

Nt - 10(894) - 8940 , 

N - 4470 (same as Case 2) , 

T - p.N N - 25(8940)4470 - 109 , 

C - (Ck + (pPjN + C N nonopt     y t      XK t t   r r 
search 
(hardware) 

- (3750 + 125)8940 + 4470(103) - $39.1(10*) . 

This must be compared with the optimum design cost of $8.94(10 ) for 

A possible example might be the decision to reduce the average 
tube power to increase life expectancy. 
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Case 2.  If one were to reoptimlze the design in this case, based on 

the new value of p , then from Eq. (29) the new optimum cost would be 

opt 
search 
(hardware) 

2T C 
s r 

<ct + W 

■•»fsy $24.9(10°)   . 

Combined Array 

As a second example of a nonoptimum design, consider the effect 

on overall hardware cost of using a single combined array in which 

each element is used both for transmitting and receiving. Again we 

use the search radar of Case 2 as our point of reference. 

Thus let pk - 250 watts, CkJ  = 3750 + 1000 - $4750, C =■ $5/watt, rt ' t+r P 

and r - 10 .  Since 
s 

N = N « N 
t   r 

rs = PtNtNr ' */  * l°9 ' 

Solving for N, 

•-«; 
2000 , 

C - (C p + C  )N - (5(250) + 4750)2000 - $12(10 ) . 
p t   t+r 

The cost of this combined array design is 34 percent greater than 

the $8.94(10 ) for the optimum configuration of Case 2 using separate 

transmit and receive arrays.  The practice of simply adding the sepa- 

rate transmitter and receiver module costs to obtain the cost of the 
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combined module Is reasonable since, although the antenna element and 

perhaps the phase shifter may be shared, tha resulting cost savings 

would tend to be offset by the required use of a duplexer (In the 

combined module), which is usually costly and may also tend to in- 

crease system losses. 

Simultaneous Search and Track 

It ib often advantageous to have a simultaneous search and track 

capability using a single radar. The same transmitting and receiving 

arrays can be used for both functions, and the total radiated energy 

required for both functions can be time shared so that the total av- 

erage power would be additive. 

Since for the examples presented the search designs were found 

to have more than sufficient available T    to alternately perform the 

tracking sanction, it is clear that the proper design approach to 

achieving a simultaneous capability is to modify one of the search 

designs to allow for the sharing of total average power. 

Consider the search array design of Case 2. For the specified 

search performance, the required power aperture product was found 

— Q 2 
to be PA ■ 10' watts • ft . From Eq. (50) the search parameter is 

(50) r8 - -j4 = 4üp 
8       X^ X^ 

UHF DESIGN 

By selecting an operating frequency of 495 Mc, Eq. (50) yields 

9 
f8 ■ 10 , which is the value used in the example of Case 3.  Since 
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the tracking function must be performed at the same frequency, Eq. (59) 

yields for the required value of I\ : 

(71) r   - 7-26<10l3> ■ 1.82(1013) . 

req     K 

Since in Case 2 the total average power per module is 250 watts, 

we must select a smaller average power for the search function so that 

(72)       Pt    - pt    + p    <.  250  watts . 

total   search   track 

From Eqs. (27a) and (27b), 

(73) 
L L 

opt   opt  * 
search 

Furthermore, the available T    is 

-     2 2 
rt    * Pt   

NtNr 
avail   track 

Equating this to the required value of T    (see Eq. (71)) and substi- 

tuting for N N from Eq. (73) yields 

rs 

p.   »IK - p.    -r^ - r 

r s 
Nt r          — 
opt opt      pt 

(74) 

t   "V'r  Kt    -2     ~ * t 
track      track Pt       req 

search 

rt 
. -       req -2 

•pt    "^2  Pt 
track   s   search 

req 
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For the specific values T8  = 109 and Tt      - 182(1013), Eq. (74) 
req req 

yields 

(75) pt    = 18.2<10'
6)p* 

track search 

For example, it pt     * 248 watts, then Eq. (75) yields 
search 

p     - 1.1 watts , 

track 

and the total average power is less than 250 watts, as was required 

in Eq. (72). 

If it is desirable to track more than one target, the search 

power can be reduced to accommodate the added targets while a fixed 

value for the total average power is maintained. 

For example, if pt     - 235 watts, Eq. (75) yields 
search 

pt    = 18.2(10"
6)(235)2 - 1 watt, 

track 

The radar can then track M - 15 targets, since 

Pt    - Pt    + Mpt    - 235 + 15(1) - 250 watts . 

total   search    tra-;k 

To evaluate the cost and design configuration for this radar we have 

pt    - 235 watts, C - $3750, C - $1000, and C - $5/watt. From 
search c        r P 

Eqs. (26) through (28) we obtain 

N     [i2!       1000    1    0,n 
t  J L235 " <3750 + 5'°35))J  " *JU ' 
opt 
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From Eq.   (28), 

■64- 

«r     - (375°,^("S)) ». - 4580 
opt 

opt 
search 
(hardware) 

2(Ct + CpPt)Nt  = 2(4925)930 - $9.16(106) 
opt 

The added cost to do the tracking is only that incurred in pro- 

ducing the additional average tracking power for the assumed tracking 

load of M = 15 targets: 

'tracking = Nt
Mpt      = 93° ' 15 ' l  = «,950  watts , 

tracking 

add 
tracking 

= CP /tracking " 5(13,950)  = $69,750 . 

Hence, 

C total     = 9>160.000 + 69»750 = $9.23(106) . 
(hardware) 

This cost for performing simultaneously the search and track 

functions is only slightly greater than the corresponding cost of 

$8.94(10 ) for the optimum search array design of Case 2.  This is 

because the search requirements were dominant for the specific per- 

formance requirements used in rH  examples. 

As mentioned in Section IV, we can now show that the cost of 

the above nonoptimum design differs only slightly from that for the 

optimum combined search and track array derived in Eqs. (40) through 

(46). 
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We start with 

r„ = 109, r = 15(1.82)10U = 27.3(1013) ; 

ps = 235, pt = 15 ; 

Cf = $1000, Ct = $3750, C - $5/watt 

From Eq. (45a), 

N 
t 
opt 2[Ct + C (Pt+Ps)] P • t • 3" 

io3 

p.V      (r.-wjl*    P. 
— 1+4- s f 

2[3750 + 5(15+235)] 
/235\2        /l09

+27.3(1013A  *      235 

V7 \ 15 /       "^ 

Nt      - 920  . 

opt 

Froir Eq.   (43), 

cr -t 
opt opt 

N. (3750)+ 5(15+235))   .   (920)  = 4610 
1000 

Finally, 

opt 
combined 

"  [C    + C  (pf + Pj]^,      + C N t        \-    t        st r r 
opt opt 

= 5(103)92ö + 103(4610)  - $9.22(106) 
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This optimum cost is only slightly less than the $9.23(10 ) arrived 

at for the nonoptimum case. The numbers of transmitter and receiver 

elements are also only slightly different. 

Simultaneously combining the search and track functions will, of 

course, incur additional signal processing cost. However, this would 

not be reflected in the above cost figures since signal processing 

cost was not included in the hardware cost. 
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VI. ARRAY THINNING 

THINNED ARRAYS 

During the past several years a number of Investigators have 

studied the effect of varying element spacing on the performance of 

linear and two-dimensional arrays.  The results of these studies 

have confirmed the intuitive feeling that by proper choice of element 

positions, it should be possible to increase the average element 

spacing (and hence use fewer elements for a given size aperture) 

without appreciably degrading the antenna's performance. The net 

effect is a reduction in cost without an ostensible change in 

performance. 

The results of the studies to date can be summarized roughly as 

follows: 

1. The gain and effective aperture of a thinned array are 

proportional to the number of elements in the array and do not depend 

on the extent of the physical aperture. 

2. The beamwidth in any plane is primarily determined by the 

linear extent of the aperture in this plane and not by the number of 

array elements. 

3. To attain a specified side lobe level, a thinned array must 

contain more than some minimum number of elements. This minimum 

it 
Y. T. Lo, "High Resolution Antenna Arrays with Randomly Spaced 

Elements," 1963 PTGAP International Symposium. Space Telecommunica- 
tions. July 1963, pp. 212-218; A. Ishimaru and Y. Chen, "Broadband 
Antenna Arrays by Unequal Spacings," 1963 PTGAP International 
Symposium. Space Telecommunications. July 1963, pp. 219-223. 
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number, which depends on the illumination taper, increases only very 

slowly as the arriy is thinned very rapidly. 

The fact that gain and solid angle of a thinned array may be 

treated as independent parameters (as opposed to the functional 

relation of Eq. (4a) for a filled arrsy) will now be used to re- 

evaluate the design of search and track array radars. 

SEARCH 

From Eq. (2) the single scan signal-to-noise ratio in search is 

(2) 
PG A a 

t e 

0  (4n)2R4kT ,.L d 

eff 

In the general case where there may be separate transmit and 

receive arrays (each of which it may be desirable to thin), we have 

(a)  A  s N f- , 
er   r 4 ' 

(76) 

4TTA 

(b)  G. 
et 

NtTT , 

(c) P  « PtNt , 

(d) Td =Tf^, 

<•>  -t *rr--rT-. 
xt yt ■\ y. 

where L  and L  are two physical aperture dimensions in orthogonal 
*t     yt 

directions, X  and £  are the corresponding normalized transmitter 
X
t      yt 

aperture dimensions, and ID is the solid angle of the transmitted 

beam. 
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While Eqs. (76) apply generally to arrays that are either filled 

or thinned, the actual constants of proportionality in (a), (b), and 

(c) depend on the average element spacing and aperture illumination 

taper and may differ somewhat from those indicated.  For the purposes 

of this study, such differences will be ignored. 

Substitution of (76) into (2) yields 

fT«      r   "A   64""4''TeffL 10  WE i 1 

Note that for a filled transmit array of half-wave spaced 

elements, 

2     2 
L  • L  = N   • N   • ~ ■ » N 7- . 
*t   

yt   Xt   yt 

Therefore from (76e), the solid angle of the transmitted beam for 

a filled array of half-wave spaced elements is 

(78) „t - J- . 

Substituting Eq. (78) into Eq. (77) yields exactly the same search 

parameter as in Eq. (8), and this is as it should be.  Since the 

array cost has been shown to decrease with decreasing f (e.g.  see 

Eq. (29)), it would be well to try to reduce T8 in Eq. (77) by 

choosing a transmit beamwidth that is greater than that produced by 

the filled array (i.e., Eq. (78)). However, this requires the use 

of average element spacing« of less than one-half wavelength; and 

since such spacirgs are not practicable, we see that thinning of the 

transmitting array is not a fruitful approach to cost savings for 



■fr-1"- -■;   ^^i w ■■.»- IIL.I^TO^M—^J^I^P.IP^' np ■■" » " 

-70- 

search radar arrays. The receive array can be thinned without search 

performance degradation if a bundle of receive beams is formed to 

match the transmitter beam. For fixed performance, no cost saving 

results since receive area (on each of the multiple receive beams) is 

proportional to the total number of elements that cannot be reduced 

without degradation.  In fact, the need to form multiple receive beams 

will in general result in added complexity and cost. If the same ar- 

ray is to also be used for tracking, then thinning the receive array 

would be desirable since it results in reduced cost for fixed track- 

ing performance, as we shall now see. 

TRACKING 

For tracking with a thinned receive array the angle accuracies 

of Eq. (10) become 

(79) oQ 

VNo   VNo 

7¥ ' n£y I r 0   V 0 V^SJ?- 
from which 

(80) 
N0  2TT2aa afl £ £ 

9 6 x y 
x y r r 

Substituting Eqs. (76a, b, c) into Eq. (2) yields as an alternate 

expression for E/Nn: 
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- 
■ ■ - - '"$%: 

er 
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E   - 2     ^S 
(81) f- - P,N*N  T-5  . 

H0        64nlTkT ,,L 
err 

Equating Eq. (80) and Eq. (81) yields as the tracking paramet 

,     96R4kT ,,L 
(82) r - PtN*Nr - —2 22 f . 

c   t  c r noV(£ X )aa a.   
xd x y ' 8 8 r 'r  x y 

It will add to the clarity of the discussion that follows to 

introduce at this time, in place of the parameter £ * £  the 
r   yr 

corresponding number of elements N' that the thinned receive array 
rF 

would contain if it were filled with half-wave spaced elements. Thus, 

L L   4L L 4A 
(83) N' «^J *-* = 4£ £ - -^  , 

r_DD    .2      xy  .2  ' F   x y   X        3      X 

where A is the physical area of the receive array. 

In the following analysis primed superscripts will be used to 

denote parameters associated with the thinned array design. Unprimed 

quantities will refer to parameters associated with the design of 

arrays of uniformly spaced elements. 

Thus Eq. (82) becomes 

.4. ,          /384R*kT ffL \ 
r'      "~M'2M'      I eff     1    1. t" ptN tNr - [—r : _ J zr • 

\naX oe oe Td/ N^ 

(84) 
t      "t    tr     I     ,2 

\naX a, 
x "y 

Since the cost of a tracking radar decreases with decreasing Tt 

(e.g., see Eq. (37)), it follows from Eqs. (83) and (84) that the 

radar cost can be monotonically decreased by increasing the physical 
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receive array area, or equivalently, by increasing the parameter 

N' . This result follows from the implicit assumption in the cost 
rF 

equation (21) that the array cost depends on the number of trans- 

mitter and receiver elements and not on the array area. The above 

statements are more clearly exhibited by the introduction of a new 

parameter that we will call the thinness ratio, T_, given by 

(85) 
K fR=7 
rT 

As the name indicates, T is equal to the ratio of the number 

of receiver elements used to the number required to fill the receive 

array.  Substituting Eq. (85) into (84) yields 

(86) r; « V - \ 
'384R4kT ,,L 

eff 
/384R kTeffL V 

\*o\\  aQ Td / 
x y 

Comparing Eq. (86) with Eq. (20), we see that 

(87) r; - Vt 

It follows that if the cost formula of Eq. (21) is used, the optimum 

values of N^, N^, and c'    will be given by Eqs. (36a, b) and (37), 

track 

where rfc of Eq. (20) is replaced by T^ from Eq. (87).  Thus 

,2     i\ 

(88a) 

opt Pt (Ct + Co)
2 

(88b) N' 
r 
opt 

rt (ct + c Ft)
2 
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(89) 
opt 
trtck 
(thinned) 

■*kA (f) [V, ♦«,*>] 

Comparing Eq. (89) and Eq. (37) , we obtain the simple relationship 

shown in Eq. (90): 

(90) 

opt 
track 
(thinned) 

C „ 
opt 
track 
(filled) 

This result is plotted in Fig. (10). 

1.01- 

0.1  0.2  0.3  C.4  0.5  0.6  0.7  0.8 0.9  1.0 

Thinning ratio 

Fig. 10--Ratio of the thinned to unthinned tracking array cost as 
a function of the thinness ratio 
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In practice, the idealized cost improvement predicted by Fig. 10 

cannot be achieved, particularly for very thin arrays where there will 

certainly be a cost penalty associated with extremely wide element 

spacing. Even in the absence of a significant structure cost, the 

cost of the feed lines between the elements would eventually be 

comparable to the module cost. 

A more realistic cost equation for thinned arrays should include 

a cost term proportional to receive array area. Modifying Eq. (21) 

to include such a term, we have 

(91) c' = CN' + C p.N' + C N' + C.A , t t   pri t   r r   Ar' 

where C. is the cost per unit area for the receive array and A is 

the physical area of the thinned receive array. Using Eqs. (83) and 

(85), we have 

.2      .2 N' 
(92) A = 7^ N7 - 7-r1 . ' r  4  rF  4 TR 

Substituting Eq. (92) into (91), we have 

(93) c' - <ct + cp?t)N; + (cr + ^N; . 

This equation may now be optimized for minimum cost using a 

Lagrange multiplier subject to the constraint given by the thinned 

tracking parameter T' of Eq. (86). Equation (93) is identical in 

form to Eq. (21) except that G in Eq. (21) is replaced by 
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(«■•£) 
In Eq. (93). Once again by analogy with Eqs. (31) through (37), we 

can write for the optimum values of N' N' and C7   as follows: 
t* r»    opt 

track 

(94a) 

(94b) 

Substituting this expression for N' Into Eq. (92), we obtain for the 

area occupied by the thinned receive array 

h 

(94c) * -4fe) 
Cr + CA«,2/4IR 

where V    is still given by Eq. (20). 

Finally, 

<«> c;Pt 
track 
(thinned) 

■<(ii- (•.•£)(•.**) 
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For a given thinness ratio, T , Eq. (95) is the minimum cost for 

a tracking radar having a specified tracking parameter T    and fixed 

coefficients C  p  C , C , and C.. Examination of the two product 

terms containing TR in Eq. (95) shows that as T is decreased, one 

term increases while the second decreases, indicating the possiole 

existence of an optimum choice for T to minimize cost. From Eq. (95) 

it is clear that the only parameters that determine whether or not a 

cost minimum exists versus T are C , C  and X. K    r  A 

Taking the derivative of Eq. (95) with respect to T and equating 

to zero yields the following equation for the optimum thinness ratio: 

c.x2 

<96> TR   "ST" ' 
min    r 

Depending upon the specific values for C., C , and X. either of Ar*' 
2 

two possible conditions may exist. Either C.X /4C < 1. in which case Ar' 
2 

it is profitable to thin, or CAX /4C > 1, in which case it is not 

profitable (i.e., T    > 1 results in a greater cost in agreement 
min 

with Eq. (90)). 

To exhibit these results Eq. (95) was evaluated using fixed values 

of r - 10 , Ct = $1100, and C = $5/watt, together with several dif- 

ferent values for C , CA, and X as indicated below: r  A 

Cr - $100, $1000; 

CA - 25, 50, 75, and 100 $/ft
2; 

X =2.24 ft (UHF), 0.852 ft (L band), and 0.1 ft (X band). 
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In Flg. 11, several representative curves of C*       versus 

track 
(thinned) 

T are plotted. In these curves the thinness ratio was limited to 

values greater than 0.05 since It was felt that smaller ratios would 

not be practicable. The curves of Fig. 11 Illustrate the various 

possible results of thinning the receive array. These results may be 

Interpreted as follows: 

Curve 1 shows that for fixed X, If the area cost coefficient, C., 

Is sufficiently large relative to the cost of a receive module, C , 

then thinning Is not profitable. For the cost coefficients In curve 1, 

Eq. (96) predicts T„   > 1 so that the thinned array would actually 
min 

be more costly than an unthinned array (TR - 1). Curve 2 shows that 

If C Is sufficiently large with respect to C., then the optimum thin- 

ness ratio wll1 approach zero, as predicted by Eq. (96). Actually for 

the case of curve 2, a minimum value of T Is predicted at T    ■ 0.03 K R f mln 
but Is not shown since It Is less than the arbitrary minimum value of 

T - 0.05 noted earlier. Curves 3 and 4 Illustrate that between the 

two extreme conditions exhibited by curves 1 and 2, there Is a range 

of ratios of C to C such that useful optimum thinness ratios do exist 

(i.e., 0.05 < TR   < 1). Curves 3 and 4 further illustrate that, as 
mln 

predicted by Eq. (96), when a cost minimum does exist, the larger the 

ratio of C to C., the lower the optimum thinness ratio. 

The results In Fig. 11 are all for X - 2.24 ft (UHF). The re- 

sults for the smaller wavelengths X - 0.852 ft (L band) and X - 0.1 ft 

(X band) were '  h that for all combinations of C and C., thinning 

always produced a cost reduction (i.e., there were no cases similar to 
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curve 1). At X band, the results wore such that for all cases the 

results were of the form of curve 2 so that It would be desirable to 

thin down to T * 0.05 barring any other size constraints. 

In conclusion, It has been shown that thinning of the receive 

array can reduce the cost of tracking radars, and for radars combin- 

ing search and track functions, the thinning of the receive array 

can be applied without degrading search if multiple receive beams are 

used. 
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